2-2
Out[268]= 0

Sebbar's Points of Departure

Nicholas Wheeler
13 October 2017

- Introduction

Yesterday, Ahmed Sebbar sent me a note in which he sketched the considerations that led to his interest in what I call "Sebbar polynomials," but which he suggests might be called "Pincherle polynomials" because some special cases were discussed in a 1891 paper by Salvatore Pincherle. Here I reproduce Sebbar's hurried remarks.

- Motivational considerations

Introduce the Laplacian operator

```
ln[270]:= \Delta[f_] := D[f,{\mathbf{x, 2}] + D[f, {y, 2}]}
```

and observe that $\log \left[x^{2}+y^{2}\right]$ is a solution of Laplace's equation:

$$
\Delta\left[\log \left[x^{2}+y^{2}\right]\right] / / \operatorname{Simplify}
$$

Out[275]= 0
Shift along the x -axis:

```
In[279]:= \Delta[\operatorname{Log}[(\mathbf{x}-\mathbf{h}\mp@subsup{)}{}{2}+\mp@subsup{\mathbf{y}}{}{2}]] // Simplify
```

Out[279]= 0

Evaluate

```
In[280]:= (\mathbf{x - h)}}\mp@subsup{}{\mathbf{2}}{+
Out[280]= h' }\mp@subsup{}{}{2}-2hx+\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2
```

on the unit circle:

```
\(\ln [281]:=(\mathbf{x}-\mathrm{h})^{\mathbf{2}}+\mathrm{y}^{2} / \cdot \mathbf{y}^{2} \rightarrow \mathbf{1 - \mathbf { x } ^ { 2 }} / /\) Expand
Out[281]= \(1+\mathrm{h}^{2}-2 \mathrm{hx}\)
```

So it is shifted constraint to the unit circle that produces the $1+h^{2}-2 h x$ that figures in two of Sebbar's polynomials.
Look now (why?) to the 3-variable construction
$\ln [337]]=\mathbf{f}=\mathbf{x}^{\mathbf{3}}+\mathbf{y}^{\mathbf{3}}+\mathbf{z}^{\mathbf{3}}-\mathbf{3 x y z} ;$
Again shift along the x -axis

```
ln[338]:= f /. x -> x - h // Expand
```

Out[338]= $-h^{3}+3 h^{2} x-3 h x^{2}+x^{3}+y^{3}+3 h y z-3 x y z+z^{3}$
and constrain (why? ...beyond the fact that it does simplify things) to the curve produced by intersection of the surfaces

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z=1 \\
& y z-x^{2}=0
\end{aligned}
$$

which are respectively a unit hexenhut and a cone. We have
$\ln [351]:=-h^{3}+3 h^{2} x-3 h x^{2}+x^{3}+y^{3}+3 h y z-3 x y z+z^{3}=$ $-h^{3}+3 h^{2} x-3 h x^{2}+x^{3}+\left(y^{3}+z^{3}\right)+3(h-x) y z / /$ Simplify
Out[351]= True
which by the constraint relations becomes
$\ln [395]:=-h^{3}+3 h^{2} \mathbf{x}-3 h \mathbf{x}^{2}+\mathbf{x}^{3}+\left(1-\mathbf{x}^{3}+3 \mathbf{x}^{3}\right)+3(h-x) \mathbf{x}^{2} / /$ Simplify
Out[395]= $1-h^{3}+3 h^{2} x$
The following adjustment
$\ln [396]:=\frac{\mathbf{1}}{\mathbf{h}^{3}} \% / /$ Simplify
Out[396] $=-1+\frac{1}{h^{3}}+\frac{3 x}{h}$
$\ln [397]:=-\% / \cdot\left\{\frac{\mathbf{1}}{\mathbf{h}^{3}} \rightarrow \mathbf{g}^{\mathbf{3}}, \frac{\mathbf{1}}{\mathbf{h}} \rightarrow \mathbf{g}\right\}$
Out[397]= $1-\mathrm{g}^{3}-3 \mathrm{gx}$
changes the coefficient of x from $3 h^{2}$ to $-3 g^{1}$. Compare this with the result to which the 2-dimensional theory led: $1+h^{2}-2 h x$

- Geometry of the situation

The first constraint produces the hexenhut

and the second constraint produces a cone

4
$\ln [300]:=$ ContourPlot $3 \mathrm{D}\left[\left\{\mathrm{y} z-\mathrm{x}^{2}=\mathbf{=} \mathbf{0}\right\},\{\mathrm{x},-\mathbf{2}, 2\},\{y,-2,2\},\{\mathrm{z},-2,2\}\right]$

The following figure shows their intersection:
$\ln [326]:=$ SebbarSurfaces =
Contourplot3D $\left[\left\{x^{3}+y^{3}+z^{3}-3 x y z==1, y z-x^{2}=0\right\},\{x,-2,2\},\{y,-2,2\},\{z,-2,2\}\right]$

The solution of the intersection equations has six branches

Out [306] $]=\left\{\left\{y \rightarrow \frac{1}{x^{4}}\left(\frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}+\frac{x^{3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{2^{2 / 3}}+\frac{\left.\sqrt{1+4 x^{3}}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}\right)}{22^{2 / 3}}\right)\right.\right.$,

$$
\begin{aligned}
& \left.z \rightarrow \frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{1 / 3}}{2^{1 / 3}}\right\}, \\
& \left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(-\frac{(-1)^{1 / 3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}-\frac{(-1)^{1 / 3} x^{3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{2^{2 / 3}}-\right.\right.
\end{aligned}
$$

$$
\left.\left.\frac{(-1)^{1 / 3} \sqrt{1+4 x^{3}}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}\right), z \rightarrow \frac{(-1)^{2 / 3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{1 / 3}}{2^{1 / 3}}\right\}
$$

$$
\left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(\frac{1}{2}\left(-\frac{1}{2}\right)^{2 / 3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}+\left(-\frac{1}{2}\right)^{2 / 3} x^{3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}+\right.\right.
$$

$$
\left.\left.\frac{(-1)^{2 / 3} \sqrt{1+4 x^{3}}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}\right), z \rightarrow-\left(-\frac{1}{2}\right)^{1 / 3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}
$$

$$
\left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(\frac{1}{2}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}+x^{3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}-\right.\right.
$$

$$
\left.\left.\frac{1}{2} \sqrt{1+4 x^{3}}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}\right), z \rightarrow\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}
$$

$$
\left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(-\frac{1}{2}(-1)^{1 / 3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}-(-1)^{1 / 3} x^{3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}+\right.\right.
$$

$$
\left.\left.\frac{1}{2}(-1)^{1 / 3} \sqrt{1+4 x^{3}}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}\right), z \rightarrow(-1)^{2 / 3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}
$$

$$
\left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(\frac{1}{2}(-1)^{2 / 3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}+(-1)^{2 / 3} x^{3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}-\right.\right.
$$

$$
\left.\left.\left.\frac{1}{2}(-1)^{2 / 3} \sqrt{1+4 x^{3}}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}\right), z \rightarrow-(-1)^{1 / 3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}\right\}
$$

of which ony two are real, and it is only in those that we have interest:

Branch1 =

$$
\begin{aligned}
& \left\{y \rightarrow \frac{1}{x^{4}}\left(\frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}+\frac{x^{3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{2^{2 / 3}}+\frac{\left.\sqrt{1+4 x^{3}}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}\right)}{22^{2 / 3}}\right)\right. \\
& \left.z \rightarrow \frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{1 / 3}}{2^{1 / 3}}\right\}
\end{aligned}
$$

$$
\text { Branch2 }=\left\{y \rightarrow \frac { 1 } { x ^ { 4 } } \left(\frac{1}{2}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}+x^{3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}-\right.\right.
$$

$$
\left.\left.\frac{1}{2} \sqrt{1+4 x^{3}}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}\right), z \rightarrow\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}
$$

From
$\ln [356]:=\sqrt{1+4 \mathbf{x}^{3}} / . \mathbf{x} \rightarrow-\frac{1}{2^{2 / 3}}$
Out[356]=
0
we see that reality of those branches requires $x \geqslant-\frac{1}{2^{2 / 3}}$. We arrive thus at the parametric description of two curves (branches/halves of the surface-intersection curve):
$\ln [359]:=A=\left\{x, \frac{1}{x^{4}}\left(\frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{22^{2 / 3}}+\frac{x^{3}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}}{2^{2 / 3}}+\frac{\left.\sqrt{1+4 x^{3}}\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{2 / 3}\right)}{22^{2 / 3}}\right)\right.$,

$$
\begin{aligned}
&\left.\frac{\left(1+2 x^{3}-\sqrt{1+4 x^{3}}\right)^{1 / 3}}{2^{1 / 3}}\right\} ; \\
& B=\left\{x, \frac{1}{x^{4}}\left(\frac{1}{2}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}+x^{3}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}-\right.\right. \\
&\left.\left.\frac{1}{2} \sqrt{1+4 x^{3}}\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{2 / 3}\right),\left(\frac{1}{2}+x^{3}+\frac{1}{2} \sqrt{1+4 x^{3}}\right)^{1 / 3}\right\}
\end{aligned}
$$

When plotting those curves we must arrange to omit the y-singularity at $x=0$. We proceed
$\ln [387]:=\mathcal{A 1}=$ ParametricPlot3D$\left[A,\left\{x,-\frac{1}{2^{2 / 3}},-0.005\right\}\right.$,
PlotRange $\rightarrow\{\{-2,2\},\{-2,2\},\{-2,2\}\}, \operatorname{PlotStyle} \rightarrow\{\operatorname{Red}$, Thickness [0.008]\}];
$\mathcal{A} 2=\operatorname{ParametricPlot} 3 \mathrm{D}[\mathrm{A},\{\mathrm{x}, 0.005,2\}, \operatorname{PlotRange} \rightarrow\{\{-2,2\},\{-2,2\},\{-2,2\}\}$,
PlotStyle \rightarrow \{Red, Thickness[0.008]\}];
$\mathcal{B} 1=\operatorname{ParametricPlot} 3 \mathrm{D}\left[\mathrm{B},\left\{\mathrm{x},-\frac{1}{2^{2 / 3}},-0.005\right\}, \operatorname{PlotRange} \rightarrow\{\{-2,2\},\{-2,2\},\{-2,2\}\}\right.$,
PlotStyle $\rightarrow\{\operatorname{Red}, \operatorname{Thickness}[0.008]\}] ; \mathcal{B} 2=\operatorname{ParametricPlot3D}[B,\{x, 0.005,2\}$,
PlotRange $\rightarrow\{\{-2,2\},\{-2,2\},\{-2,2\}\}$, PlotStyle $\rightarrow\{\operatorname{Red}$, Thickness [0.008] $]$;
which when joined together produce the following bent hairpin:

8
$\ln [389]:=\operatorname{Show}[\mathcal{A 1}, \mathcal{A} 2, \mathcal{B 1}, \mathcal{B 2}]$

$\ln [391]:=\operatorname{Show}[\mathcal{A} 1, \mathcal{A} 2, \mathcal{B} 1, \mathcal{B} 2$, SebbarSurfaces]

Out[391]=

Another view of the same figure:
$\ln [392]:=$ Show $[\mathcal{A} 1, \mathcal{A} 2, \mathcal{B} 1, \mathcal{B 2}$, SebbarSurfaces]

- NOTE:

This site
https://en.wikipedia.org/wiki/Salvatore_Pincherle
reports that a selection of 62 of Pincherle's papeers was published in 1954 to honor his Centennial. I see that Pincherle (18541936) studied \& collaborated with some of my favorite people (Betti, Dini, Volterra) and knew a lot about the hypergeometric function and its relatives.

